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ABSTRACT

This paper analyzes the regularity of plane elasticity problems with

piecewise analytic data. The results are given in the frames of the countably

weighted Sobolev spaces introduced by Babu~ka and Guo [SIAM J. Math. Anal.,

Vol 19 (1988), pp. 172-203, Vol. 20 (1989), pp. 763-781]. These results are

of major significance for the practical design and theoretical analysis of the

p and h-p version of the finite element solutions of the elasticity

problems.

Key Words. Elasticity problem with piecewise analytic data, countably normed

space, weighted Sobolev space, singularity.

AHS(MOS) Subject Classifications. 35B85, 35D10, 35G15, 35J05, 73C02



§1. INTRODUCTION

The regularity of the boundary value problems for elliptic equations was

addressed in many papers. The regularity of the solution, when the domain is

not smooth, was addressed in [18,191 and subsequently in many papers (see e.g.

[13,20,21,22,26]). The analysis was made for the scalar equation (e.g.

Laplace equation) and for general elliptic systems, e.g. theory of elasticity.

Although the results are essentially similar, the proofs are in various

details different. The regularity of the solution is typically described in

terms of Sobolev spaces and various decompositions of the solution in the

singular and regular parts. These results are important not only for

theoretical reasons but also for the design and analysis of the numerical

treatment of these problems.

Finite element method is today the mostly used method for solving the

elliptic equations. There are three versions of the finite element method,

the h, p and h-p finite element method (see e.g. [71). The following

questions arise in the connection with the FEM:

a) What is a typical class of problems in applications, e.g. structural

mechanics,

b) What regularity results are the most useful for the design and

analysis of the finite element method, especially Its h-p version.

The answer to the first question is that in the structural mechanics we

deal with the problems with piecewise analytic data (boundary of the domain,

coefficients of the equation and boundary conditions, etc.). Description by

the standard Sobolev of finite order neglects features important for the

numerical solution.

The answer to the second question is that we need such a description

which allows to construct the numerical method which is maximally effective.
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In the case of the p-version of the finite element the user provides the

mesh, and the degree is adaptively selected (see e.g., Applied Structure

(Rasna Corp. CA, USA) or STRIPE (Aeronautical Research Inst. of Sweden)). The

proper regularity description leads to the rules which the user has to follow

(see e.g. [27]). In the case of the h-p version the proper form of the

regularity results allow to construct the meshes and degrees such that the

convergence of the method is exponential, see e.g. [4,5,6,14].

We have found that the proper form of the regularity results which serves

best the goals of the numerical analysis is the description of the regularity

in the frame of countably normed (weighted) Sobolev spaces. Although the

spaces are close to the Gevrey spaces (see (9,11]) they have some special

different features, and the form of the statements are directly related to the

effective use in the FEM. We have introduced these spaces in (2,3,4] and

shown their significant applications for the finite element analysis. We have

proven that the h-p version with an exponential rate of convergence can be

constructed.

In [2,3,41 we addressed the problem of the scalar equation. Here we

address the elasticity problem. Although the basic results and the analysis

methodology are similar here and for the scalar problem, there are various

essential details which need significant modification of the analysis.

Because of the major Importance of the elasticity in application, the detailed

theoretical results presented here are essential. They do not follow directly

or easily from the available results in the literature.

In Section 2 we introduce the weighted Sobolev spaces and countably

normed space. The variational solution of the elasticity problem with data

given In weighted spaces is addressed in Section 3. Section 4 gives a

complete analysis of the elasticity problem in an infinite angular domain.
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In Section 5 we prove the regularity theorems for the elasticity problem in

polygonal domains in terms of the countably weighted Sobolev spaces.

The methodology and techniques used for the elasticity problem can be

used for general elliptic systems of equations.
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§2. PRELIMINARIES

The notations and definition of spaces in (141 are the ones most often

used in this paper. Let n denote a polygon with vertices A and open
edges rI connecting Ai and A +1, 1 - I < M(AM+I = A,) shown in Fig. 2.1.

Let 2) and N be subsets of A = {1, 2,.. M}, =A(\N, r0 = U FI and rF

U ri, r = 80 = r0 U F1 . Let i = Cs,... ,6) be M-tuple of real numbers,
iEA' M +k

0 < 61 < 1, 1 5 1 5 M, and *0+k =TT r1  (x) where k is an integer andI 13+k i=1I

ri Is the distance between x and vertex Ai.

A5 A 3

r ri3

Ai •FM
AM

Fig. 2.1 Polygonal Domain

By Hk((O) we denote the usual Sobolev spaces and by Hk-t(Q) the

weighted Sobolev spaces for integer k, f, k a t _> 0 with the norm

k

= Ikull12 l( + 2 11I+$1 1 D a ULl2 2
HI_ (Q) H (a) i > -( )

(if f =0, the term Ilull drops out) where D u = u - - U

H (a) 12 1 2
1 12 1 x2

a= (aI' ) a • 0 integer, I = 1,2. We shall write H ' (0) = L(9)
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For convenience, we use the spaces _fk e(Q) instead of Hk.,CQ) if Q

is finite or infinite sector, with the norm

Hullu2  = Hull 2  + - D a ul2

H - (Q) L2(Q)

(if t = 0, the term llull 2 drops out) where e = - a lua
r 8r 8a 2

(r,8) is the polar coordinate, a is the same as above.

The spaces Wk-(Q) Introduced by Kondrat~v (see [16, 17, 18]), are used

in this paper as well in polar coordinates, and

IIOUllR• 2 1 r 2 (g-k+mj) I•ul 2 rdrde.

Let D = {(T,8)1, -w < T < C, 0 < 6 < w}, and for integer k Z 0 and

real h > 0 we define

H (D) = {ul D D e2 hTlDau% 2 d -de = 1lull2(D) < cl
O_<lal_<kD

0We shall write Hh(D) = Lh(D).

The countably normed spaces B (1), t = 0, 1,2, are defined by

B Ht'(Q)),lu +kw' lUiILt cc ) < Cd k-t(k-)'!,
ul3 13, +k-I' Lk2I

for lal = k = 1,1+1,.... with C,d -> 1 independent of k},

and S (S) is defined in polar coordinates on finite sector S = {(r,e)I

0 < r < 5, 0 < < W} by

S t (S) = fulu -e '•(S), lIr'-t+a'aull( ( Cd-(kM-)!,

for lal = k = 1,1+1,.... with C,d Z 1, independent of k}.

We shall write B t(D,C,d) or t (SC,d) if we emphasize the constants C

and d.
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The spaces Hi-1/2 ,t/ 2 (r-m) and tl/2 rm) are defined as the trace

spaces of Hke(fl) and B (fl) on r[, m = 0,1, t = 1,2, and

'lglHki_/ 2 , -1/2 Cr'1 1) GI G -k- tI

We shall use the notation D ku and 2)u which are defined as

IDkul2 = 7 ID'ul2

lal=k

and
= r Iul =u

Dk u12 =Z:r22I
I l=k

The theorem on the equivalence of weighted Sobolev spaces defined in

Cartesian coordinates and polar coordinates will be used later. We quote the

following theorem from (2].

Theorem 2.1 (cf. Theorem 2.1 of [2]). Let S be a finite sector = {(r,e)l

0 < r < 6, 0 < e < W}, *1 = r 3, 0 < ft < 1, then for 0 _< t 5 2 Integer,

u HkeCS), (resp. B (S)) if and only if u e 3fk(S)(resp. (S))

We denote the vector and vector space by bold face. For example, u =

(u 1 ,U 2 )T, Hk(C) = Hk(C) x Hk(a), B3t(g) = B t 2 ) x B (1), etc. The theorem

quoted above holds for vector spaces H ig(S) and C(S)(resp. B1 (9)

and S (17)) as well.
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§3. VARIATIONAL SOLUTION OF ELASTICITY PROBLEM WITH

DATA GIVEN IN WEIGHTED SPACES

Consider the linear plain strain elasticity problem on polygon 0

_-PU (÷.L Z_ + au f
(3. ia) -(+)- _ -in0

Ur = o

(3. ib) 0 G I

T = 1 = G1 1 1

where u = (uU 2 T is displacement, and a = is the stress

tensor given by

2 auu 1 + A __ +u 2,

11 au1  ua 8xu2l

(3.2) 022 = u2 + A , +*x 2 J

IT12 =21 = A u- +

A and g are Lam6 coefficients, n is unit outward normal to a8, the force

T t ttT t t I T
r = (flf 2T, the boundary condition g = (g 1 ,g 2 )) , G = (G1 , G22) , etc.

Using the differential operator L and the boundary operator B we

write (3.1) as

Lu = f in 0
(3.1' ) 1 xBul r = 9° 0 ]

Theorem 3.1. Let f e L (0) = 0), gG 3  /2 t (r), t = 0,1, and

ir 0 1 0, then problem (3.1) has a unique solution u e H1 (0) (in the weak
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sense), and

(3.3) IlullHlc () 1 fllL3(a)+ 2 1 IIH/2-t'3/2-t(r t

Proof. First we assume that gO 0. The billnear form on H6(11) x Hl(0) is

3r2 aul av1 + 8u2 av 21 + X Pau+ au2 1 rv 1, 8av21
(3.4) B(u, 1 x x2 x2 J Vax x2J Laxi 8x 2J

rau U2_ +___ x

+ Ltaxi +ax 2 J LjxZ 8x2J

where H%(Q) = fulu E H (0), ulro = 0.

Owing to Lemma 2.9 and 2.11 of [2] we have

Ifr g1 .vdsl C lgl 1/2 1/2 1 IlvlHl1 (11 ,) V v e H (Q).1 l H /2, ) H0

From Lemma 2.10 of [2] we have f e (H 1 C(Q))', and

IJf f.vdxl < C' I 1 1"L /3(a) IlvlVH1(Q) , V v E Hl (Q).

Hence

F(v) = f.vdx + gl'v ds

1
Is a linear and continuous functional on H %Q), and

11 il :5 C II1 fIIL'S(al) + 1 l 1 2 1/2"

(Hl (0)), C( + iL111+rg1/2' 1/2(r

1
The variational problem Is to seek u e H6(0) such that

0

B(u,v) = F(v) for any v e H6(02).

1 0
There Is a well-known Korn inequality, I.e., for u e H%(w), ir i o,

C1Hull2 " :f , r-aui 2  + au1 2  1 r _ u 2 x 5 C2 IlU2

H s(0) f ta Ixlj tax2 Lax2 + j( ,
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where C > 0 (i = 1,2) are independent of u (see (17]). Applying the

Lax-Milgram theorem, we have existence and uniqueness of the weak solution of

(3.1), and (3.3) holds. If g0 * 0, let w = u - Go, then w e H0IcQ)

sat isfies

B(w,v) fn f-vdx + r 1g 9 -n *vds - B(G ,v), V v e H6(2

F (v). Jl~ f

Obviously F e (H1 ())'. Applying the result above we obtain the existence

and uniqueness of the solution of (3.1) in general (in the weak sense).

§4. AUXILIARY PROBLEMS ON INFINITE SECTOR

In order to analyze the behavior of the solution at the corners of 02, we

consider the elasticity equation (3.1) on an infinite sector Q =

{(r,e)Io < r < w, 0 < 9 < c}. We prefer to write the equation in polar

T rrr' ar81
coordinates (see e.g. (25]). Let u = (u ru 6 ) and = =--rr' 06r' (' =

. rcos, sinel,
(r f)T etc., and let A = r-sine,cose Then U= Au, f=Af, =Ag ,

T -
= Ao-AT. u satisfies

-[Au 2 u- 2 ± _ (A + A) •8 r- + Zr" = 1fr r r r25 rLr r r r

(4.1) in Q,

218 Au~ L8 u 8
r 2 -2 ( 4 A) ra9 +r-+ r- f=9

and (r is given by

8lu 2u u au

ar C5 r r e
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1 aue ] U rT I" aue])
(4.2) lee = 2(a- + + Y FC + r + F 8 ]

1~~ ~ ~ 88 8u u

re T~r Ir8508 5r rj

One of three kinds of boundary conditions may be imposed on 8Q, namely

(4.3a) U -= 0, (Dirichlet condition)

(4.3b) T I = (0re,0ee)T - =( = -11(Nemn condition)

-OT-O T -1 -1•

(4.3c) u 1 = = G ( re' _ = ' = (Mixed condition).

Hereafter, g denotes the different vectors = G trO) and - (rw)
0(

in the trace sense at 8 = O,w. Let E(D) and B(R) be corresponding

matrix-differential operator and boundary operator. We rewrite (4.1) and

(4.3) as

-0 -1(4.4) [1(2)), B(UM)] = [f, g , g ]

By the change of variable T = &n 1, we convert the equation (4.1) andr

boundary condition (4.3) into the problem L(u) = f on a strip domain D =

{((,,]) -w < t < w, 0 < 8 < i}, I.e.,

-(2p+A) -UT - ae U+ (+ + A) + (3p + A) a- =

(4.5) in D
2- u 2; a2u(-a) aT- (3p + A) au - a- - (2gs + A) - + ju 6 =a8aGa86- 88 e u e =

with one of the following boundary conditions:
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(4.6a) u e = = G o, (Dirichlet condition)

- e)T i l

(4.6b) T, = = 0=01o,, (Neumann condition)

(4.6c) ul - ~o - -1 -1
= o =e' T=w = g=

(Mixed condition)

whr (T(T T t~ I T IT' t -T
where u u )= (uee), U ee 0)), =G G e G e

t-T T - - T 2T TT T,-2tfandG Ce-,8))T, 0 = 0,1, f = C 'f,) = e f r(e- 9) f e(e- ,e))

CUT -
CO-_ pru uT +9 a

(4.7) UT a 6  a- T) + T

Further, by Fourier transformation we obtain a system of ordinary

equations

2* -dT 2  
du,

-A. + (2p+A)(1+n2)u + I ) + (3+;)) _ = f
de2 T de T

(4.8) %dur d~u9

-((3j.+A - i1)(,+A)) du - (2,+A) d + ,(l+in2)U = f
d9 2=de2

with one of the following boundary conditions:

(4.9a) uleo, = g0 = Ol 0=0,w (Dirichlet condition)

T .1 al(4.9b) TIle=0 o, = (4rTOer = =0 = Ge =0,w (Neumann condition)

(4.9c) U g *0 l GQ** 1

9  0  9=0 'T O -OMx) I 0=(j gto

"(Mixed condition)

T T
where u C ulr u )=. (,i (i )) "= •FCu), etc.,
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3(U) _ I J e- u(r,6)dr, 0 = + ih, -w < g < w, h > 0,
V•-w

and

(4.10) A = - - (17+1)u] , = (2w+.) d-u + ( 2 w+A-i~l)uT"

By L(De,,) and B(D 8,) we denote the matrix-differential operator and

boundary operator. Furthermore, we write the system and the boundary

condition as

(4.11) U(70u = [L(DOPq), B(D uflu= (fG ,G I] (or [ g

The operator U(n) = [L(D, 0), B(D ,,)] depends polynomially on the

complex parameter -n. By the argument used in [14] for all 71, with the

exception of certain isolated points, U(n) realizes an Isomorphism:

112M , L 2(1) x H2(I) x H'(I) (or (1) x C2 x C2 ). Consequently, the
-1

inverse operator 9(4) = U(n) is an operator-valued meromorphic function of

n with poles of finite multiplicity. These poles are the eigenvalues of

U•(0) (see [10,16,18,19,20,21,22]). For each pole n of R(n), the

homogeneous problem of (4.11) has at least one non-trivial solution

corresponding (eigenvector function) In H2 (I). The transcendental equations

which the eigenvalues satisfy have been derived in several different ways and

can be seen in the literatures of continuum mechanics and mathematics (see

e.g. [10, 24, 26, 28J). The typical approach is to consider a biharmonic

equation in Q instead of the elasticity equations. Since we adopt the

Tdisplacement u = (ur, u)T in polar coordinates in (4.8) and (4.9) the

coefficients of the operator L(D ,n) and B(De,7) are constants. Hence we

are able to derive the transcendental equations directly from the homogeneous

equation (4.8) and the boundary condition (4.9) on displacement and traction.
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Since these equations are not of the main interest in this paper we will

present them in a lemma below. For completeness we include the proof in the

Appendix.

Lemma 4.1. Let n = Iz be an eigenvalue of U(n), and u be the Poisson

ratio. Then

(i) for the Dirichlet problem (4.8) and (4.9a), z satisfies

(4.12) sin2 z = _-v)2sin2W,

(ii) for the Neumann problem (4.8) and (4.9b), z satisfies

(4.13) sin2z = z 2sin2w ,

specially n = 0 Is an eigenvalue with multiplicity of 2, the corresponding

T Teigenvectors are el = (cos 8, -sin 6) and e2 = (sin e, cos 8)

(iii) for the mixed problem (4.8) and (4.9c), z satisfies

(4.14) sin 4(1-v)2  z sin2
3-4u 3-4v

and i = ±1 (i.e., z = ±1) are the eigenvalues with multiplicity of 1 if

(1 + ) cos 2w + 1 =. 0
A

From the equation (4.11) - (4.13) it is easily seen that zeroes of these

equations are symmetric with respect to the origin and the real axis in

complex plane. Hence the eigenvalues of L(1)) are located In the complex

plane symmetrically with respect to the origin and the imaginary axis. By T

we denote the eigenvalues, and let K 1 be a positive number such that

(4.15) K 1 = min im- = min I Imi1I
Tp K T 71 n T 7

Im 7>0 Im "0

Next we prove the Agranovich & Vishik conditions I and II which are

substantial to the key inequality (4.17) (see [11). These two conditions were

13



used implicitly or explicitly in many papers, e.g., (261 for elasticity

problems and in [21,22] for general elliptic systems.

Let Du = I d- and A (D,n) be the principal part of the operator
dO 0

LCDOO). We write A0 (D,3) in matrix form

[ n 2(2p+A) + gD2 (A+A)nD1
0( j+A) D n 2 + (2W+A)D 2

Lemma 4.2. (Condition I) For C e R1 (real), n E X {ijl Iarg n1 < or

larg n - wl < 0 with any *i1 E (0,n/2) and liii + lI * 0, det (A0(9,W)
A

0. Furthermore, the equation det (A0C(,n)) = 0 in ý has equal numbers

of roots in upper and lower half-planes for n e Z 0 and n * 0.

Proof. It is easy to see that

det (A0 (,n,)) = p(2j+A)(n 2+C) 2 * 0

for g e R , e X 0 with any E (0,Mx/2), and IgI + Ini * 0. Also it is

seen that C = t in are the roots of the equation det (A0(<,n)) = 0 in
0i

(complex). Hence the equation has 2 roots in upper and lower plane, respec-

tively if 0 = E EZ" o

Let B 0D,,) be the principal part of the boundary operator B(D9,7)

defined by (4.10), and 60 = 0 (resp. W, I = (0,w) (resp. I. = (-®, C}).

Then we have the following lemma.

Lemma 4.3. (Condition II) For any e1 E (0,x/2), if i * 0 and n e X 0

= {fIl larg n - Ml < #I or larg nl < #I}, the equation on the half line

A0(Dn)W = 0, e GIeo

(4.16) o

14



has a unique stable solution V such that IWI -- *O0 as e--4 (resp.

S-• -CO).

Proof. We will prove the lemma for e0 = 0 and IT0 = (O,c). The proof for

80 = w is similar with what follows. For the homogeneous equation (4.16)

the solution V must have the form e- ) with b satisfying the

equation

2 2 2det (A0 (ib,n)) = g(2p+A) (b -n• ) = 0.

Hence b = ±ij are the roots with multiplicity of 2. For .1 and

0, Reb= Ren*O. Let a= -sgn (Rei), o -

S(~)= ce [ + c 2 ea":

is the stable solution if c1 and c 2  can be uniquely determined by any

given boundary condition h e C2.

For the Dirichlet condition I 8=0 = h, cI and c2  satisfy

0 2Cx~ "O/11) [cc')=
Then obviously c1 and c2  can be uniquely solved from the equation above.

For the Neumann condition we have by (4.10)

SdWr

A - i #niw6
1-iAnWr + (2A÷A) de6

Then the Neumann boundary condition B(D,n)V = h leads to

,2#i 1 (2p+A( 1-o')1 [2]2

is



Since

det $A] = 12p7) (C+p) (I-c) = -142n 0

for 71 * 0, c 1 and c2  can be uniquely determined by h. Therefore (4.16)

has unique stable solution for 1? E 2 0 and 71 * 0 and

51 < C0 e-b - as --- w

with C > 0 and b0 = -IRen'l

After verifying the conditions I and II we have the following theorem.

Theorem 4.1. Suppose there is no pole of R{(-) on the line Im } = b, then

the solution u = 9(n)[f, O,GI] of the problem (4.8) and (4.9) satisfies

^24 ^2 : l 2 +1 alleI2.(4.17) l1 O112  + 11411 ull 2  2 + I )l 2(I
e=o, 1

1 Z ,i+ lW

e=0, 1

Proof. Due to Lemmas 4.1 and 4.2 the conditions I and II are satisfied on an

angle E1 = {f1: larg -qi < or larg n - wl < *i} with e (0,n/2). By

Theorem 6.1 of [11, (4.17) holds with C independent of -q and u if E X 1

and Ihl > no, where -0 is some positive real constant. The line Im • = b

is contained in X1 except a finite segment for which IRe ni < Ibi cosec V

Hence (4.17) holds for 'n on the line Im 1) = b with Ihi > iO. For those

2n on the line with 141 S no, R(Wn) is analytic. Hence for f e L (), gt E

C2 , the solution u- exists in H 2(I), and

1u1ll + 1171 ll1 2(i S C2(1411 )(lifll 2 + 1j (I9oI+ ))
16=0,1

16



2 + 2:1 al(3( IE () -(i)
:5 C3(lf 1 L M =0, 1 ?,1

n3-21 otl2+g^t ))

t=o, 1

where C2 and C3 are some constants independent of u and n. Thus we

have proved (4.17) for 7) on the whole line Im 7 = b on which •R(i) has no

pole. a

Lemma 4.4. Let 5 be a strip = {7)l-h < Im < h}, 0 < h < KI' then R(C) has

no pole in 9 for the Dirichlet and mixed problems, and the origin is the

only pole of 9W(n) in 5' for the Neumann problem.

Proof. Due to the definition of K and Theorem 6.1 of [I( 9R(A) may have

poles on a finite segment of the real axis. We shall show that there is no

pole of R(n) on the real axis for the Dirichlet and mixed problems and the

origin is the only pole of R(n) on the real axis for the Neumann problem.

(1) Suppose that n = (real) is the pole of R(n) for the Dirichlet

problem, C satisfies

shiew = +t sin w-3-4v

But Lemma A. 1 shows that for • = 0 and w = kw, there is no non-trivial

solution of (4.8) and (4.9a). Hence we may assume that w * kir. Let f(g) -

shwa - Isin wIg, then fV(g) = wchgw - Isin wI ? w - Isin wI > 0. Hence f(e)

> 0 for 0 < g < w. Similarly, we can show that f'(C) < 0 for -w < g < 0.
1

Therefore Ish~I > IsinIl M~I > - Isin w[ ICI for real • * 0 and

v e (0,1/2), which implies that the zero is the only real number which

satisfies (4.12). Since zero is not an eigenvalue, t(n) has no pole on the

real line for the problem with the Dirichlet boundary condition.

17



The proof for the mixed boundary condition is similar.

(11) Suppose -q = (real) Is a pole of 9(iq) for the Neumann problem. Then

Ssatisfies

shCw = ±sin w.

It has been proven in (i) that Ishol > IgI Isin &I for C e (-w,o)

and ý * 0, hence, on the real line, (4.13) is satisfied only at the origin.

Lemma A.2 has shown that 0 = 0 is the eigenvalue with multiplicity of 2,

TT
the corresponding characteristic subspace Is spanned by el = (cos 8, -sin 0)T

and e2 = (sin e, cos 8)T. o

If h 0 0 is selected in (-Ks,K1), there is no pole of •R(i) for the

Dirichlet, Neumann and mixed problems on the line Im -q = h. As a conse-

quence of Theorem 4.1 and Lemma 4.4 we have Theorem 4.2 and Theorem 4.3.

Theorem 4.2. If i e 0 (D), 6 eýG •-D), t= o = , 0< h < Ki, then equation

(4.4) with boundary conditions (4.5) has a unique solution u e H<(D) and

Ial s 2

(4.18) IIDIILh(D) ' C li+ z I=1611 <-(D)

II0G< (resp. IIGl 1 ) is absent in (4.18) for the Neumann problem

G (D) %D)

(resp. the Dirichlet problem).

Theorem 4.3. If f e L (Q), G I W2• (Q), I = 0,1, 0 < 1 < 1, S > 1 - Kit

and then the equation (4.1) with boundary condition (4.3) has the unique

solution U in 1(Q), and

(4.19) 11IU-11 2C (III1.(Q) + Z II l _2-t

18



-0where JIG 11 W2 (resp. JIG 1 1 drops out in (4.19) for the Neumann
11(Q) U (Q)

problem (resp. the Dirichlet problem).

Remark 4.1. The proof of Theorem 4.2 and 4.3 is similar to those for the

Poisson equation in (2]. The shift theorem in the space Wp(Q) for general

elliptic systems was given in (21], where the Agranovich-Vishik's conditions

are used, and the shift theorem in Cp(Q) for the plane elasticity problem
13 sp

was given In 126] without verifying the conditions.

Remark 4.2. The shift theorem can be easily generalized to any k > 2, namely

1lu11 -5 C [tl {•Wk-2(Q) + Z=0, 11,lk+2-...]
-kQ • dQes

provided e W1 -2( , e 1 k(Q) and there Is no pole of R(iq) on the

line Im vl = k + 1 - •. But in practical problems the shift theorem is less

applicable for k > 2 because of very strong conditions on f and Gt in

the neighborhood of the origin, for instance when f and G-t are analytic

and vanish rapidly at w, but do not belong to Vk(Q), k Z 2. Hence the shift

theorem for k > 2 is not directly applicable to these problems with analytic

or piecewise analytic data (see [22]). For this reason we addressed the shift

theorem in the space WUk(Q) only for k = 2, and will address it In the space

Hg k(Q) for k > 2 in Section 5

-0

Corollary 4.1. If G vanishes at the origin and GE H2-2(Q) then

(4.19) can be rewritten as

(4.19') HuII{U I (Q) 5 C 1117 11L 1(Q) + " =Z 2- f (Q))"

ist( ) t = 0, 1 , an

Proof. By Lemma A, 2 of (21 G-e V2 t(Q) = 0,1, and
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11 G' 11 _< C I f l 2V 2 (Q) 11 GII?- 2-f (Q)

Then (4.19') follows easily from (4.19). o

Corollary 4.2. Let u = A ui denote the displacement in Cartesian

coordinates and u e 1 2 (Q), 0 < 9 < 1 be the solution of (4.1) and (4.3).

Then u e 1 2-(Q), and there are constants cI and c2 > 0 independent of u

and u such that

(4.20) 2 llull <oI) II < c 11CU1"

Proof. Since

u, = u cos 9 - u sin e

u2 = u sin e + u0 cos 6

obviously 1jr-U11L 2 ( Q = Ilr- 2 UllL2(Q) < Ilull• .Q) Further note that

2U r a ue 2 _ rau,

2Ol 1 u2ul 2

2 2 2- sin 9 - sin 9 COSr 82 a8 2 r 82e2 r 5

-I ( Cu cos 6 + u sin e)
r

The wehav U S-28 2 ul
13-2 a - 2Then we have <r 1 2 5 C OuRl . Similarly we can prove that for

8e2 L(Q) W2 (Q)

0 5 k S 2,

,r-2+kgku 2 -2
hr 1112 l5CIullW(Q

which yields
hluhll ( ) C2Hl ,II )

In the exactly same way we can prove the other half of (4.20). o
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For the regularity of the weak solution of (3.1) we are interested in the

special auxiliary problem for which f and G vanish for r > 1.

Theorem 4.4. Let u c W•B(Q) be the solution of (4.1) and (4.3) withLB(}, ?•-1,2-1(Q),I=0

-(Q), , e = 0, 1 0 < 9 < 1, 9 > 1 - kI, and let u = A u

be the displacement in Cartesian Coordinates. If f and Gd, 1 = 0, 1

vanish for r > 1, and G vanishes for r = 0, then for the problem with the

Dirichlet boundary condition (4.3a) and mixed boundary condition (4.3c)

(4.1a)1- 2 +I 1 - 2
(4.21a) u12)lu1 2• + 11r-luil 2 < ,

L-(Q) LC(Q)

(4.21b) 112)lU11 2 + 11r- 1 U1l2 < 2
L2(Q) L2(Q)

and for the problem with the Neumann boundary condition (4.3b)

(4.22) 111DluW2 2  < .
L (Q)

Proof. We first prove (4.21) for the Dirichlet problem. Select /' such

that 1 < j9' < 1 + K1 . Then g' > 1 > g and -K1 < 1 - g' < 0 < 1 - g < K1,

Due to Lemma 4.4 R(n) has no pole between the line Im 71 = 1 - S and the

line I. m = 1 - 8". Because f and G, t = 0, 1 vanish for r > I and

Go = 0 at the origin, f e L G' a ,.-Q), t = 0,1. By the argument

of Theorem 4.3, u e V2 (Q). Thus we have

(4.23) .r (Izliul2 + IrlU1 2]rdrde

( 2{9'-l)I•i 1 2 + r2(g'-2) 1U12 rdrde 1II Ut {Q)

On other hand we have
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(4.24) jo fo1 {i¼ j+rliI]d

r 02(11)12 r r2(132)iI12)rdrdO : -2
f0 f02, (Q)

which together with (4.23) yields (4.21a). Noting that

1 2 1-2 +il22 - r+
U~ 

-
12 2 Uau1-212) ul 12)1 + Iru u r2 +Ur a- @ J 2ID1lul + Ir-u

-1 29- -1-25--
r

ir- ul2 = Ir- 'I2

we have (4.21b) Immediately.

The proof for the mixed problem is similar and will not again be

elaborated here. Next we prove (4.22) for the Neumann problem. Let 3' be

selected as above, then by Lemma 4.4 the origin is the only pole of R(ii)

between the line Im n =- and the line Im I- '. Let u =

u(en-, 6) and
r

- -,O R(-n)[f, e nd• .
V' -- + L i ( 1 -13 )

Arguing as above i* is a solution of the Dirichlet problem (4.1) and (4.3b)

in i, (Q). By Theorem 2 of [261

U -u + a.1 + a2e2

where and e2 are defined as In Lemma 4.4. Let u A- u and

u" = A-iu", then
u = uO + (c c 2)T

and

11U1 2 = 11)u-I2
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Note that

(4.25) fW fO721 u, 2 rdrdD = O ,21 + Ilu,2] rdrde

r< II 2(11) 12 2 + 22(12)I2]dde

- 2
W2

(Q)

and

(4.26) f f IDlul 2 rdrde = ff1 ui 2 rdrdf

11
~ 0(2(t'1l) ID1 iiii2 + r2(13'-2 ) iIi I2]rdrcie

<- 2
1 W2 .(Q).

Combining (4.25) and (4.26) we get (4.22). 0

Since IV 2 
= Du 2  p1-2 = ID 2

Since 12) U1i =Dulu12) = IDlul we have the following corollary.

Corollary 4.3. Let u and u be the same as in Theorem 4.4. Then for the

problem with Dirichlet condition (4.3a) and mixed condition (4.3c)

(4.27a) IID-'I12( + -1-ll2 < 20

(4.2b) ID'uhI 2  + 1r -1ul 22  <in
L (Q) L2(Q)

(4.27b) 1lll2 + l-u2 -1 2,

L'•(Q)L2(Q)

and for the problems with Neumann condition (4.3b)

(4.28) luh L 0

Remark 4.3. (4.21) and (4.27) may not hold for the problem with the Neumann

condition, (4.22) and (4.28) may not hold for u.
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§5. REGULARITY OF SOLUTION OF THE ELASTICITY PROBLEM

We shall first discuss the regularity of the weak solution of the

problem (3.1) over the polygonal domain 0 with f E L f(l) and

GG -2-2(0), namely the relationship between the weak solution and the

solution of the auxiliary problem over an infinite sector Q with f and

G having a bounded support. Then we shall derive the regularity of the

solution of the problem (3.1) in the countable weighted Sobolev space.

Assume that A1 Is located at the origin and F1 lies in positive

x1-axis. Let (r,e) denote polar coordinates, and let 8 E (0,1) and S =

{(r,9)10 < r < ', 0 > 0 < w} c Q. Let 06 (r) be a cut-off function in

CW(RR) such that * 1 for 0 < r < ý and 0 for r > 6. ifF 1 uFM
2

1 rI, let v = (v,v2 )T = 76(r)u, otherwise v = 0' 6(r)(u - G (A ) where u =

(Ulu 2 ) e H (12) is the weak solution of (3.1). v is extended to Q = S =

{(r,9)10 < r < w, 0 < 6 < W} by zero extension outside Sa'.

Theorem 5.1. Let u be the weak solution of the problem (3.1) with

f e L (1) and Gt E l2-i'2-e (0), 0 < f > 1, g > 1-Ki, and let v = *gu If

rI v r M c r1  and v = (u - GO(A 1 ) otherwise. Then

(I) If rF c r or rM c r or rI v rM c r°, then v = ,(Q). and

2

(5.1a) ,,vWi 2 :) C (,,f, L C(S ) + Z 1IG'1 2,,.e + CSU), 1.

isQ)a = Hi- '2CS) H(Sa\S6/2

(it) If F v FM C F , then (v - : cle ) -E 1-(Q), where e=

1 E1=1,2

T T(1,0) , @2 = (0,1) , cl, I = 1,2 are some constants, and

(5.lb) Ov- c cIe IW( :5 C (IIi f S ÷ LIGll l, 1(÷) 1u + 1 U11
11,2 (Q) 13aH is'(S) a HS\S/22
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Proof. (i) We prove (5.1a) for the case rI u r c r0 (Dirichlet boundary

type), the proof for the mixed boundary type is similar with what follows.

At first we may assume that G = 0 at Al, then v satisfies

W[) = Oaf + L1 (u, Oa) = f in Q

(5.2) o = O=o,w = aO e=0,W

where L 1 (U,0 is a sum of terms D(auD a@0, with 0 < IaI < 1, 1 < Ia' I < 2.

Obviously i, G0 and v vanish for r > 6 and

( 5 . 3 ) [ i f I L ( Q ) C I IfII i s (S a ) + U 1 .(S 3\ S 3/ 2

For w E H =(Q)={wI II 2  <Q P c i , W 1 01 we have

B(v,w) = j f • w rdrdo- , Vw e H0(Q)

where B is the bilinear form defined in (3.4).

On the other hand, by Theorem 4.3 and Corollary 4.1-4.2 there exists a

unique solution z = (zl,z 2 )T of (5.2) in W•(Q), and

< C fllL (S + JGOII0,112#2 + u
is 0(S a H(S a\S(/

1~

and owing to Corollary 4.3 LD hl <}

B(z,w) =fQf wrdrde , VW e HI(Q);

hence
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B(z-v,w) = 0 VW e H6 (Q).

Since H6(Q) is dense in H6(Q), B(z-v,z-v) = 0. Therefore (z-v) can only

be a rigid body motion. Due to the Dirichlet boundary condition

v = z e WI2(Q).

If Go 0 at the origin, let u - GO(A1) and v u. Then we

have

L(v) = 0,f + L1 (u,0) = f in Q

Vi e=oc = (G °(rG)- GO(A 1))6=0,w =GU W*

=0Obviously F G L (Q) , f and G vanishes In Q for r > 8. Applying the

results above to v we have that v = 0 (U - G0(A)) e V2 (Q) and (5.1a)
1 1

holds.

(ni) If r 1 rm c rF, v satisfies

L(v) = Of + L(u,) = i in Q

(5.5)

T(v)I =o,• = + u'= 1
I 90,w '3 6=0,w g = 0,

where L1(uS), ( are the same as in (I), and t (uO,) consists of terms

uD (3, al = 1. Obviously 61e V (Q), and

(5.6) ,IG 111( C IIIGII 1 , + IlU1 J
Vim I Hi (Sa) H (S3\S6/2)

and f,G1 and v vanish for r > 8. For any V e l()={IDlVIL 2  <

B(v,w) = f f-wdx + fagQlwds.

On the other hand, by Theorem 4.3 and Corollary 4.1-4.2 there Is a unique

solution z - (zl,z 2 )T of (5.5) In W2 (Q) and
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(5.7) IIz1Il -< C (11lf 11L (Q) + I1 11 ]

9 (Q) (Q

by (5.3) and (5.6)

-S C [llfILS(S') + JIG 1 lUll+ 1 U"

a •/2

and by Theorem 4.4 lID l < 2.

=11Let H (Q) = {wlw e HI(Q) with bounded support in Q}, then z

satisfies

B(z,w) = fiwdx + J Qgl'wds, Vw e HI(Q}

Therefore

B(z - v,w) = 0, Vw e HI(Q).

Since H (Q) is dense In HI(Q) we have

B(z - v, z - v) = 0,

which Indicates that the strain energy Is zero, z - v represents only a

rigid body motion, i.e.,

3

z - V : 1 cte
1=1

where @3 = (-y,x) T, and c1, I = 1,2,3 are constants. Because D (z - v)

e L2 (Q), c 3 = 0. Then (5.lb) follows from (5.7).

Corollary 5.1. v is continuous in (, and (v - v(A )) e 2 (Q).
2

Proof. If r I w r c 1  by Theorem 5.1, (v - e 0 ' for any

20
R > O. Hence (v- E cIe 1 ) e C (s )o (see [21), therefore v is continuous1=1

2 2
in Q. Since (v - £ cle1 ) e 2U(Q), 0 < 0 < I, r- 2 (v - E ce) e L (So)

I1=1 1=1 R0
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2
which Implies that c cleI = v(A,) and that (v - v(A1)) eW (Q).

I= 1

If r1 c r 0  or r c r 0  by Theorem 5.1 v = - 6 (u - G0 ) e W•(Q). Hence

v e H2 '2 (S ) for any Ro> 0, thus v - G (A )e C 0(SO), and v is

continuous in a and v(AI) = GO(A 1 ), and (v - v((A)) c _2 CQ).

Corollary 5.2. Let u = (u l,u2)T and U = (uuO)T be the weak solution of

(4.1) in Cartesian and polar coordinates, respectively. Then (u - uWA ))

I1EW2-CS6 ) and Ciu- - (A )E~S,), and

(5.8a)I1u-u(A 1 )IIw 2 )<_ C 1, flI L (S += IIG'11 ?-t 2-t(S + 1'Ull

3 /2 1=0 is H /

1

(5.8b)Ilii-i(A 1 )I 1W2: C (11711 L ( 11 h-tjGI H. 2 ...1- + 11 U11
_(S(S HC(S \S13 6/2 t=0 a 6 /2

Proof. Note that v = u and v = I in S /2' then (5.8a) and (5.8b) follow

easily from Theorem 5.1 and Corollary 5.1.

Remark 5.1. The regularity of the weak solution of the elasticity problem in

polynomial domain was addressed in [261. It was concluded in [26] that v =

EU W2 (Q) with 1 = 1 + c, c > 0 arbitrary provided f e LCQ),

G1 E W2 1 21 (Q), and I€•) has no pole on the line Im 71 = -c. Actually the

condition g > 1 is not necessary. Theorem 5.1 indicates that v e H2' 2 (Q)

or (v - v(A )) Q V2 (Q) if 9 > 1 - K1* KI is the smallest positive

imaginary part of elgenvalues of the operator R('i), which depends on the

geometry of the domain, the type of boundary conditions and the material

properties. The condition 9 > 1 - KI precisely reflects the nature of the
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singularity of v. If K < 1, then v E H2'2 (Q) with f e (1 - k1 ,1), or if

k > I then v E 12 (Q), and v can be even smoother. We will elaborate on

this later. Nevertheless there always exists some f e (0,1) such that v e

, 2 (O) and (v - v(A)) e W-(Q). The improvement above is substantial.

Lemma 5.1. For 3 e (0,1), k 2-0, 0 < t < 2 and u(A ) = 0 there exists

cI, c 2 > 0 such that

(5.9) i - lO k< NO CIlulI
1 . 13 (S) x~ t(S6) ii;R' (S)

Moreover, if for some constant C, d a 1 and t S I-< :5 k

(5. lOa) 11r *-t+1D U11L2 < C dk-t(k-f)!

then for btl = k and C S MC, d 5 Nd,

(5.lOb) lr t-+1D (X U11 -5 Cd k-t(k-W)!

Vice versa, if (5. lOb) holds for t 5 Ial 5 k, then (5. 10a) stands for

{la = k with C < MC and d < Nd.

Proof. Note that

-k =Cs0k - iOkaku akue
ar 1  r ark

ku -sin - sine

Then

k kr

( 5.11 ) {r k-1+13 aku 1=( 11 r k-t+13 akar k ar k i2 (S

which Is the second Inequality of (5.9) for at, = lal - k. For a 2 =lol k
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we have

k k k-m a m U k-m a m Ua u 2 [) d cosO r -d sinE a],
86 i=Okrn ik- nJ

ask M-iOm dO 8 d6 86 a

k k dk-----i k- rn-a8U 2  Z (k fk] sne r +d cosO 6].
86 k~ IM=O dekin 8" 8

Therefore k
18-1~t a u

(5.12) 1 1 2r 2 am"j,,
ekllL2 (S a m=O 8em L2[ a

Since 0 < • < 1 and u(A ) = 0 , due to Lemma A.2 of (2] we have

13-1- <

11 r U-2 11 :2 C S1 U11-

ilr ul-2 8 - Co"U l ,"
a-e2I L2 ( CS 0 )GI;1 )(S

h~r ~ a 8u3 a35)~C0 ~h

13-2-

Hence for 0 5 t : 2, k -> t, we have
k

(5.13) Ir1-3t k U C2 :Y-' k)111r 3A-t 2mu

8ek L(S) 86 L2(S)

< C211ll1 Yt

X13~ (5,3)

Actually we can make similar arguments for each term of type rai,-t+u, 0 a

< Ial = k. Hence we have the second Inequality of (5.9). The first

Inequality of (5.9) can be proved in exactly the same way.

Next we shall prove (5.lOb) if (5.lOa) holds. (5.10a) and (5.11) ~

(5.13) lead to

(5.14a) lr-k4+1 8ku C d-k-kt)

8r Lk (S
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and
kk

(5. 14b) {tr - 1 2 C 2C (m-t) d(m-t)
r L2 (S 2 ý=

-< CC f*_l (l~j)k-t (k-l)!

which are (5.1ob) for ao2 = 0 and a2 - lal = k, respectively. Similar

estimates can be derived for general terms r 1-2+f) u, 0 < (X < IjS = k.

Hence (5.10b) holds with d <5 I and C : NC where M = 2 and N =CC

1 + 1. In exactly the same way we can prove that (5.10a) holds for lal =

k with J 6 Md and C : NC if (5. 10b) holds for t = lal < k. 0

k*O~ I w GC H.k+2-1C) ,11
Theorem 5.2. Let fe H' 0(Q), gs.= Gj r, G kt (), C =e0, I =

($13,2# .... ps), 0 < 1i < 1, 9 > 1 - KI1 (i 1  is defined in (4.15) with respect

to the vertex Ai) 1 : i -< m, and ir 010 0 . Then the problem of (3.1) hasI+2

a unique solution u e Hk+2,2 (D ), and

(5.15) I1ulIHkB+2'2(Q) :5 C(l'fllHk'O(Q2) + =O, 1 IG'11 H k+2-t,2-t(g)I"

Furthermore, if f e {0(, Cf, d ), Gt E BC(D, C d = 0,1 then

u e BD-(, Cu, d ) with C and d satisfying
U 'Uu U U

Cu < MC (Cf + CCO + Cgl),
(5. 16)

d < Md max(df, dco, )

where Mc and Md are some constants independent of f and Gt.

Remark 5.2. If ir°i - o, the theorem holds provided f and g satisfy

usual condition:
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faIdx + g1ds = 0, 1 = 1,2

fnx2 f1 - x2 f 1 )dx + ÷j (x 2g1 - xlg2 )ds = 0.

Then the solution uniquely exists (up to a rigid body motion) in M1k+ (£2)

and BD2(£), respectively.

Proof. For the sake of simplicity, let il be a straight line polygon shown

In Fig. 2.1. By Theorem 3.1, the problem (3.1) has the unique solution u =

(u ,u2)T E lH(12)-.

Let Sl,81 = {(r ,61)1O < rI < si, 0 < 81 < (d} c C2, shown in Fig. 5.1,

where ri and 8. are the polar coordinates with respect to the vertex A.

and edge r . Assume that 0 < SI < I such that

S AS = S for I *J, I,j= 1,2,..., M.

Ai Fi

Fig. 5. 1 Neighborhood of Vertex
M

Let Q, M 0 U S1 . By the argument of difference quotient It is easy

to show that

(5.17) pIug 2 fi +1 Z IGtl ]
(0/) k0/4 =O,i 1(96/4)
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:5C (11f 11 0 (1)+ YZ li It 11 H+3/2 -.. 3/2 -t. t
e ,=o, 1(is)(r

If f B CD(Q), G E 5 (C), t = 0,1, by Morrey's argument in r.2 3 1 we can

prove that u is analytic in 9 and on r except the vertices, and there

exist some constants C0  and d0  satisfying

(5.18) CO _M0 (CCe + C + C
0 0 1

d _< NO max(dr G d Gd1

such that for Ila = k 2- 2, 1 -< 1 _< M

(5.19) 2d k-2(k-2)!.

"2(0/2)5C0
By the arguments of Theorem 2.1 and Lemma 5. 1 we have

(5.20) 11r;•2V 2 US -< Cod k-2 (k - 2)!
I L 2(S i'S\S 0 00

, i 1,5/2

where C and d may be different from those in (5.19), but we use the same

notations for simplicity.

By Theorem 2.1 and Lemma 5.1 fji eX 1k(0) (rsp! 0s()

}k+3/2-I•,3/2-L e. .!3/2-e• e•
(r t (resp. S2 (t )), and it Is sufficient to prove that in

each sector S Ia/2, 1 < 1 < M

(5.21) NlOuI¶k+2,2 : Ci (;lk, 0 1 z '1 k+2 2-
"-3#' 2( 1,8/2 1t 1=0, 1 a/ 8

+ Il ll , 1

+ NOh k+1
)9 (Sai \Sa/2)

where C depends on k, and
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(5.22) 1li Vi -1 LIL Ot (S I, 1i/2 ) III

respectively, where IaJ = k + 2, k - 0, Li, P1  and DI are sufficiently

large constants, but independent of k. (i:- 2) = a2 - 2 If -> 2 and

a2 -2 = 0 If a2 < 2.

By Corollary 5.2 we have

(5.23) Ilu - iu(A )IW2- < C(lif-Ll ( + I0 2.-tv 2-t
oti (S3 /2 a* i I~ e=o,i o (S a
• iC,8./2) iS,,) - .

1

+ IIUII

We may assume that I = 1, A is at the origin, r1  lies on the positive

x -direction, and assume without losing generality that u(A ) = 0. To

simplify the notation we shall write S = Sa, l = 1 , etc. There are
1

three cases to be considered:

(I) r,, rM c r

(ii) ri rM, c rI,

(11) r I c r H, rm c r

-0 -k ka u
In case (i) we assume G =0, and let v =r 2-. It can be verified that

ark
-k
v satisfies

(v-)r (r f) in S5

(5.24)

SkIeo,w = 0

Then applying (5.23) to the problem (5.24) we obtain
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-k -kc(5.25) 1 H11U , '2 (S / ) V I) CS

J3 5/2 13 5/2

:5 k-2 a 2k k au
8[ r k r fL 9 (S + Br -k (S lcs\S /2j

which Implies that for ial = k + 2, k > 0, 0 5 a2 : 2

(5.26) -r•1 l2 a- 2 k-2 a k (r2f) a k(5.2 )Sl r/)2Ul : C [L (S ) + ulrk - 111s \s 2j

L 5 S(/2 r rk is a 8r k 5G( s\ /2

SCI1l'1 )G , o) 0 + , ll k+1 ]
S9' CS5 ) a (Sa• /2

For a2 > 2, for instance, a2 = k + 2, k > 0 we have from the equation (4.1)

ak+22 Ckf ak+2 ak+1 I9ku

(5.27) = r ;- (+ (A + 2 + r
(e k+2 r k r 2 aek k raek k

ak+1 U8 Uk+2u
+ (A + 3g) - + (A + g) raek~laraek+l

a 8 Uk+2 ak+1UE@k+2. 2 8kf r2 u6 8 B k8
6-2 + i 2 +r

(5.28) (A + 2A) 8 ek+2 r- ;8rekk 8+-p

86+ I 8r826 ra e

ak+lu ak+2

(A + 3A) r + (A + A) r
ae k+1 rae k+1

(5.27) and (5.28) lead to

2k+2- -2 ak f ak+2
(5.29) 11 r- 2 H-isL(S a/2) r - ll (5)+ II ar2 ek k IL (S )

k+1- k
+lr-18 U + -2 a8

8r6ekllLj6(S5) 86k is a

35



ak+l- -I ak+2-ll-28 Ue• IL( -18 U •($)

+ e r T 1 L (S a + ararOek+1 1L (Saj{

with C=max( 1 +13A

Suppose (5.21) holds with G = 0 for 0 Slal <I k + 2 and

0 <2 < k + 1. Then we have

(5.30) {r-2 ak+2U11 (S ý 1 To + S1

88 k+ 1 S6/2 k.0(S) ) +1 S\A a a) ( /2

which is (5.26) for a2 = aII = k + 2. Actually we can prove (5.27) for each

term of type r a -2 eu In exactly the same way. If G-0 * 0, let V = u- G-,

then applying the results above to v we get (5.21) with absence of G1 .

Next we shall prove (5.22) for case (I). Assume again that Go = 0, let

f B0 (0, C- d-) then

k 2- kf k-1-
.k-2 ak(r f) k- k-la f(5.31) 1r ark 1L i(S ) < 5ir ; kIL {(S8) +2k r k-1 LL (S )

+ k(k - 1) ikr k-2 aS;

a k-----2 L (S .3

:5 C44(d + 2dý- +4dk2 ]k!

< 3C- d kk
ff

Also due to (5.20) we have

k -k k+1- k .
(5.32) I1r ur -- 11(S \S <- U11  + 8kull

8 k 8/2 ar L(S\S/2) r L(S\S

+ /1 aki3 /

r8r kaL (S 6S\SS/ 2 )
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5C dk- 1) + k- 2 k(k - 2)! + dk-i (k -1)!]CO0 0 -0 d

k-i

: 4C dk (k - 1)!

Substituting (5.31)-(5.32) into (5.26) we get (5.22) for Jai = k + 2, k > 0,

0 < a2 < 2 with L = 4C(C0 + C) and D = max (dTd -)
G

Now we shall prove (5.27) for a2 = k + 2, k > 0. Suppose (5.22) holds

for 0 5 Iai < k + 2 and 0 < a2 < k + 1, then by (5.29) we have

(5.33) hr-2 ak+2 i< 15 -dkk! + LDkpk-2 k! + LD k-Pk-2 (k - 1)!aG k+2I L 3 (S S/2 ) f

+ LDk-2pk-2 (k - 2)! + LDk-1pk-1 (k - 1)! + LDkPk-1lk!}

2 DP 2k+ LCpk + C- + DpC2

P2Dk(k-i) + P

<5 LD k pk k!

where P and D are selected large enough, e.g. P = 4C and df/DP < 1.

Similarly, we can prove (5.22) for each term of type r D -2Du, 2 5 a2 < IaI -

k + 2. For dG *0 , let w = u - G-0 and f = T - L(GO) eB'(Q, C•-, df_)

with Cy, = Cy + (SA + 11p) CG-O and d-; = max(d-,d-O). Then applying the

results above to W and T we get (5.22) in general (G is absent), with L

M 0o(C0 + Cj + C-_O) and D = max(d-fd do).

In case (i1): k= rka , k > 2 satisfies
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k 2--k k-2 a(r f
E(v) r ar k i

(5.34) )T k-1 akcrG)I
rO' e =0, ark I=0,

Applying (5.23) to (5.34) we have

-kc k-2 akcr2f) + lk-1 ak(rd 1 ,
IV H2 2 (S/r k IILi(Sa) ark J01; 1(s

13 5/2 1r a

+ Ilvkl 1 }S\

)G (Sa \S/2

which implies that for Iai = k + 2, k > 0, 0 - =a2 -< 2

( I -2a•-L( < k-2 a k(r 2f) k-1 ak (r
(5.36 ) jr U L 3(s /2 ) r ai rk L C'(S ') * iir r k R)I G 1,1 s

+ ir kakU1
ar k r G I (S a\S 6/2

< C {lIfi1 kO i+ i'II k+l + IUll k}"
X1.3 (Sa) X is(Sa t (Sa.\S/2

For 2 < a 2 S Ikl = k + 2, arguing as in case (i), we can conclude (5.22) with

the absence of G for 0 5 a 2 S< jl = k + 2.

I ff es , cf df), 5E'e%(1, C-1, d-1), then (5.32) holds, and

(5.37) ir k-1 ak-1 (rd.1 kak+i11 k-la k1

ark-I 1 1, k-- {L (S ) + (2k+1) fir k-L (SOr I ('s8 ) < iOrk 1 3 8rk Il3s

+ k(k - 1) ik- 2 +138 k-1 ak+l-l

k- (S) k-1 1 L(S)
8r 1(3a .5 rae a3.

k-2 akG1
kIIr k-I 1_ClL(S

3r ae 0 a
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< CI dk k! + (2k+1) d (k - 1)! + d k-2k!
G1 

-1

+ dk k! + dk- k! 1

S6C dk k!

dG1 G1

which together with (5.31)-(5.32) and (5.35)-(5.36) yield (5.22) for lal = k

+ 2, k > 0, 0 : x2 S 2 with L = 6C(C0 + CY + C i) and D = max(dT, d 1,

d ). As arguing as in case (i) we can conclude (5.22) in general for case

(ii).

The proof for case (iii) is similar to cases (i) and (ii). We will not

repeat it.

Summarizing the analyses in each sector and interior we conclude that

Se k+2, 2 (f) and (5.22) holds if T e)gk,'0 (Q) and G- k+2-,2-
0,1. Furthermore, if Te a'0 (Q) and G4 -•l U' t 0,1, then u'_(n)

with C- and d- satisfying
U U

C- < M(C-+ C + C 1 + C)
G G

d- = max{d-, d d do}U -0' -1

which together with (5.26a) imply

C-+M(C-+C + C
u c Go -O .'

d- Md(di;+ d d + .U-0 -1
UG G

By Theorem 2.1 and Lemma 5.2 u e B2(0, C d) with some C and d
is u u

satisfying (5.16).
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i
Remark 5.3. If eI = 1 then .i can be chosen any positive number. If

I I
ecI > 1, the solution u may be smoother, for instance, 1 < DC1 < 2, 1 _< i - M

ank 1 u(1), (resp. BH (n2) E e Hk+2- ,-(12) (resp. B 3-(11)) wih .E

(K I - 1, 1) and k a 1, then u E ,3(Q) (resp. (Q)). In general,

S +2(n, n+1 1 1 M. u e +2  Qn) (resp. u e B (Qn) if f and GHk!n(Q(n, n2-tn < t n M.

are given in jj'n(g) and ()+2-, (2)(resp. Bn(n) and B+ (Q)).

Acknowledgement. The authors wish to thank Professor Bruce Kellogg for his

helpful discussion during preparation of this paper.
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APPENDIX

The transcendental equations (4.11) - (4.13) are given in Lemma 4.1

without proof. We shall derive these equations here. Consider the

homogeneous problem

(A.1) U(in)u = [L(DeO ), §(D, i])u = 0

namely d2 U

-J - + (21L)+)(1+ + 2 )u + (In(g+A) + (3p+A)) de=
de 2  T d 0

(A.2) 2A in I = (O,w)
du d2ue 2

- C(3p+A) - in(++A)) de (2g+A) d-2  + A(1 +2)A() = 0dde

with one of the following boundary conditions:

(A.3a) u 6 _O,1 = 0 (Dirichlet condition)

(A.3b) TI = (0 O ) 0 = 0 (Neumann condition)(A.=3),T (e' 66 e=o,w

(A.3c) U1e 0 = 0, Tie=w = (00e e)O= 1 M 0 (Mixed condition)

where ie and o6e are given by (4.10).

Since the coefficients of the differential operator L and boundary

operator B are constants, the solution u can be written in e =

bO Te (cIc 2 b and C satisfy A(b)C = 0 with

1 22
A(b) = A + (l + 12)(2p + A) (iw(, + A) + (3O + A)M

LIn(A + A) - (3O + AMb - (2A + X)b2 + p(1 + 72

Then

(A.4) det A(b) = g{2p + A)[(b 2 
- (I + n2))2 + 4b 2 ] .

Let n = Iz, by solving for b from det(A(b)) = 0 we have

b1 = i(z + 1), b2 = i(z + 1), b3 = (i(z - 1), b = -i(z - 1)
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For z * 0, _ 1,

A(bl) = (z + 1) [(A + 3p) - z(jg + A) i(-z(;L + A) + Op + A))]

1-i(z(g + A) + (3p + A)) (A + 3p) + (W + A)z]

the corresponding eigen vector C1 = (1, 1)T. Similarly we have C2 =

(1, - 1 )T, C3 = (1, iH)T, C4 = (1, -iH)T corresponding to b2, b3  and b4

with

(A.5) H = z(p+A) + (3g+A)

z(g+A) - (3-g+A)

Therefore, the solution of homogeneous problem has the following form:

cos(z + 1)e rfsin(z + 1)0 cos(z - i)@
. = -sin(z + 1)J + 92Lcos(z + l)e+ 31-Hsin(z - 1)0J

[ csin(z - 1)0]
+ - 1)0

If z = ±1 (i.e., =i), bI = 21, b2 = -21, b3 = 4 = 0, A(b 3 ) = A(b 4)

are null matrix. The corresponding eigen vectors are

C, = (1, ) T, C2 = (1, -_)T, C3 = (1, O)T, C4 = (0, 1)T

and the solution of homogeneous problem has the form

jcos2e. + B_(si ne, [I 0
BiMsi2eJ + 2 Icos2OJ + B 3 L10os + r i4 i r]

with

f1ý. for z 1

M 4+;k for z - -1

For z = 0, bI = 4 = i, b = b3 = -I, the corresponding elgenvectors are

T T
C1 = (1, 1)T, C2 = (1, -1)
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and the solution of the homogeneous problem has the form

(&.8 = Bcose B sineO) (3B A + X)ecosO + AsinelU 1 -ea ( + +sle- 1~
(A. 8) U B il-si neJ + 2 LcoseJ + 133-(3p + X)esine -gcose

+ B ((3p + A)esine - Acose)
4 Op + X)ecose - pstneJ

B = (BB 2B3B 4 )T would be determined according to the types of

boundary conditions.

Lemma A.I. Let i = lz be an eigenvalue of the operator I(iq) for the

Dirichlet problem (A.2) and (A.3a), then z satisfies the equation

(A.9) sin2 z _ 2 sin2 W.

Proof. For the Dirichlet boundary condition ul = 0, if z 0 0, ±1 due

to (A.3a) and (A.6), B satisfies EB 0 with

1 0 1 0

0 1 0 H
S= cos(z-1}w sin(z+l)w cos(z+l)w sin(z+l)w "

ý-sn(z-1)w cos(z+l)w -Hsin(z+l)c Hcos(z+l)wJ

For the existence of non-trivia2i B it is sufficient and necessary that

(A.1O) det(l) = (1 + H)2 sin 2 - (1 - H)2 sin 2z = 0.

Note that A = -- andSL1-2ii

(1+-)
(A.11) 1+H W z(g+A) (1+ ) z

1-H 3- TpL+-;kT 3 A 34(3+-) -4

(A.10) and (A.11) yield (A.9).
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If z = ±1, by (A.7) B satisfies XB = 0 with

1 0 1 0O

0 M 0 1
x cos2o sin2w 1 0

-MsIn2o) Mcos2 01

2
and det(l) = 4M sin w. Since 0 < w : 2w, for w = x,2w the homogeneous

problem has a non-trivial solution. But z = tl and w = w,2w satisfy

(A.9). Hence z = ±1 are the zeroes of (A.9) for w = w,2n, which are

included in the equation (A.9).

If z = 0, by (A.5), B satisfies ZB = 0 with

1 0 0 -A

0 M -9 1
cos sinw (3p+A)wcosn+Aslnc (3A+A)wslnw-Acosw

-sinw coss -(3p+A)consn-pcosn (3p+A)wcosi-gsinc j

and det(Z) = (3g+A) - (A+) 2sin2 > 0 which implies B = 0. Hence zero

Is not an eigenvalue.

Lemma A.2. Let n = iz be an eigenvalue of the operator U(I) for the

Neumann problem (A.2) and (A.3b), then z satisfies the equation

(A.12) sin2 zw = z 2 sinw,

specially n - 0 is an eigenvalue with multiplicity of 2, the corresponding

T Teigenvectors are @1 (cose, -sinG) and e 2 = (sine, cose)

Proof. For Neumann boundary condition a-=e a 6ea = 0 we have by

(4.10)
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u TT = To To- + (z - 1)u6  = 0

(A. 13) ^ au()

e5= (2-+A) - + (2giA+Az)u = 0

For z 0 0, ±1 by (A. 13) and (A.6), B satisfies MB = 0 with

[ 0 2t•z 0 g(l+H)(z-1)
-21A 0 A 0

-2gzsln(z+l)w 2lzcos(z+l)w -p(l+H)(z-l)sin(z-l)w g(l+H)(z-l)cos(z-l)c

-2pzcos(z+l)w -2gzsin(z+l) Acos(z-l)w Asin(z-l)w

where

(A.14) A = (2.+A) + Az - H(z-l)(2w+A)

For the existence of non-trivial solutions it is necessary and sufficient

that

det(E) = -8z 2g2 {(A-g(1+H)(z-l)) 2sin 2w - (A+W(H+1)(z-l)) 2sin z2} = 0.

Hence we obtain the equation

sin 2zw = f-u1z1 i
-A+;i(H+I) (z-1) si

By (A.5) and (A.14) we have

A-p(H+1)(z-1)
(A.15S) AA+(H+I)(z-1)

which implies (A.12) immediately.

For z = 1, by (A.13) and (A.7), B satisfies EB = 0 with
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0 2p 0 0O

-2A 0 2(#A+A) 0

-2;Asin2w 2gcos2w 0 0

-2pcos2w -2psin2w 2C(g+A) 0

then det(E) = 0, and (0,0,0,1)T is the corresponding solution of EB 0.

Accordingly u = (0,1) , which represents a rotation around the origin.

For z = -1 by (A.13) and (A.7), B satisfies EB = 0 with

0 2p(1-M) 0 -2p

-2p(1-M)sln2w -2W(1-M)cosww 0 -2p
0=
0 0 2p 0

0 0 2g 0

then det(E) = 0. Hence for z = ±1, the equation MB has a non-trivial

solution. The null space corresponding to the eigenvalue il = ±1 is not our

Interest here, and we will not elaborate on it further, but refer to [261.

For z = 0, by (A.5) and (A.8) B satisfies ZB = 0 with

o o 01 0

0 0 0 1
I 2p(2p+=)

0 0 cosw sinw

0 0 -snw cosW

Obviously, det(l) = 0, rank(E) = 2, and (1,0,0,0)T and (0,1,0,0)T are two

linearly independent solutions of EB = 0. Accordingly the space of

non-trivial solutions of homogeneous problem is spanned by

@1 m (cose, -sine) T, e2 = (sine, cose)T

46



which represent the translation in x and x2  directions. 0

Lemma A.3. Let -n = iz be an eigenvalue of the operator U(n) for the mixed

problem (A.2) and (A.3c), then z satisfies the equation

.2 4(1-) 2 z2 2

(A.16) sin2 zw = 3-41 - 4 sin 2,

in the case that (1+-)cos2w + 1 = 0, i = ±i are the eigenvalues, and

(A.16) Is satisfied.

Proof. For the mixed boundary condition we have ul0=0 = 0 and TI 6 ==

-. T
(a ',e e)TG=W = 0. If z 0 0, ±1 by (A.6) and (A.13), B satisfies ZB 0

with

1 0 1 0

S1 0 H
Z =2;zsin~z+1}w 2p*z cos(z+1)w -g(H+1)(z-l)sin(z-1)w lu(H+1)(z-1)cos(z-1)w

-2zcos(z-1)w -2pz sin(z+l)w Acos(z-1)a Asin(z-1)c

where A is given by (A.14). Then

det(Z) = 4p Hz2 - Ai(1+H)(z-i) + 2p(HAz-pz(z-1)(1+H))

- 2(1+H)z(A-(z-1)(i+H)p)sin 2 - 2(H-i)zW(A+ji(z-1)(1+H))sin2 z.

For the existence of non-trivial B, det(E) = 0. Hence we have

(A. 17) si 2zn 2 s 4pI~z2 - A(1+H)(z-I) + 2z(HA-p(z-I)(I+H)2(1-H)z(A+(z-1)(I+H)A-F

- (H+1)(A-(z-i)(i+H)g) sin2 w

(H-1)(A+(z-:)(4+H)7)
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Due to (A.11) and (A.14) we obtain

(A.18) (h+1)(A-g(z-1)(H+1)) 
= Z-

(H-I)(A+p(_z-1)(H+I)) 3-4p

and

(A.19) 4AHz2 - A(H+1)(z-1) + 2z(HA-A(z-I)(H+1)) _ 4(0-02

2(H-l)z(A+(z-1)(l+H)A) 3-4v

(A.17) - (A.19) yields (A.16).

For z = I by (A.13) and (A.7) B satisfies ZB = 0 with

1 0 1 0"

0 1 0 1

-2p sin2w 2p cos2w 0 0

-2p cos2w -2p sin2w 2(p+A) 0

then det(E) = 4p2[(1+-)cos2w + 11. Similarly for z = -1

1 0 1 0O

0 M 0 1

0 0 2p 0

-2p(1-M)sin2w 2p(1-M)cos2w 0 -2

and det(E) = [(1+ ý)cos2w + 11. Hence z = ±1 are elgenvalues if

AJ

(1+ý)cos2w + 1 = 0, and also (A.16) is satisfied in the case that z ±1 and

(1+1)cos2w + 1 = 0. Therefore the equation EB = 0 has a non-trivial

solution in that case.

For z - 0 then, by (A.13) and (A.8) B satisfies EB = 0 with
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1 0 0 -A

0 1 ~• 0

0 0 2A(24+A)cosw 2g(2;i+A)sinw

0 0 -2p(2g+A)sinw 2W(2g+A)cosw.

then det(E) = 2g(2g+A) > 0. Hence 7 = 0 is not an elgenvalue of U(7L). 03

Remark. The transcendental equations for the Dirichlet, Neumann and mixed

boundary conditions were derived by using the argument of biharmonic function

in [261 where displacement u = (uU2 )T in Cartesian coordinates was used.

Consequently the coefficients of the equation (A.1) are not constants.

Therefore the simple argument of linear system of ordinary equations with

constant coefficients Is not valid. Nevertheless it shows that the

transcendental equations are independent of choice of coordinates.
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The Laboratory for Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

e To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

* To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

"* To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

"* To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

"* To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babugka,Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


